First the azureml-sdk must be piped:
pip install -upgrade azureml-sdk
According to this blog these libs should be included in python
import azuremlfrom azureml.core import Experimentfrom azureml.core import Workspace, Runfrom azureml.core.compute import ComputeTarget, AmlComputefrom azureml.core.compute_target import ComputeTargetException
ws = Workspace.from_config()
exp = Experiment(workspace=ws, name='my experiment name')
Running on a GPU-enabled Azure Machine Learning compute cluster:
cluster_name = "gpucluster"
try:
compute_target = ComputeTarget(workspace=ws, name=cluster_name)
print('Found existing compute target')except ComputeTargetException:
print('Creating a new compute target...')
compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',
max_nodes=4)
compute_target = ComputeTarget.create(ws, cluster_name, compute_config)
compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)
Tensorflow is retrieved from azureml: from azureml.train.dnn import TensorFlow
script_params = {
'--data-folder': dataset.as_named_input('mnist').as_mount(),
'--batch-size': 50,
'--first-layer-neurons': 300,
'--second-layer-neurons': 100,
'--learning-rate': 0.001
}
est = TensorFlow(source_directory=script_folder,
entry_script='keras_mnist.py',
script_params=script_params,
compute_target=compute_target,
pip_packages=['keras', 'matplotlib'],
use_gpu=True)
run = exp.submit(est)
run.wait_for_completion(show_output=True)
Geen opmerkingen:
Een reactie posten